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Abstract. In this paper, it is introduced the notion of r-fuzzy ideal separation axioms Ti, i = 0, 1, 2 based on a fuzzy ideal
I on a fuzzy topological space (X, τ). An r-fuzzy ideal connectedness related to the fuzzy ideal I is introduced which has
relations with a previous r-fuzzy connectedness. An r-fuzzy ideal compactness related to I is introduced which has also
relations with many other types of fuzzy compactness.
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1. Introduction and Preliminaries

This is a way to use a fuzzy ideal I defined
on a fuzzy topological space (X, τ) giving gen-
eralizations of many notions and results in fuzzy
topological spaces. r-fuzzy ideal Ti, i = 0, 1, 2
separation axioms are new types of fuzzy separa-
tion axioms related with the fuzzy ideal I on X. It
is proved many implications between these r-fuzzy
ideal Ti, i = 0, 1, 2 spaces and the previous r-fuzzy
Ti, i = 0, 1, 2 defined in [7] and studied in [4–6],
and also the preimage and the image of r-fuzzy ideal
Ti, i = 0, 1, 2 spaces are r-fuzzy ideal Ti, i = 0, 1, 2
spaces as well. r-fuzzy ideal connectedness is intro-
duced related with I giving a generalization of the
r-fuzzy connectedness notion ([9, 10]). The image of
r-fuzzy ideal connected is r-fuzzy ideal connected as
well. r-fuzzy ideal compactness is introduced using
the fuzzy ideal I on X giving a generalization of
many other fuzzy compactness notions [1, 11]. The
image of r-fuzzy compact is r-fuzzy ideal compact,
and many special cases are deduced.
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Note that: In [3], the author used the ideal notion to
reduce the soft boundary region in ordinary soft rough
topological space but here we joined the fuzzy ideal
notion to fuzzy topology in sense of Šostak with-
out concerning soft roughness. In [12], the authors
introduced fuzzy soft separation axioms and fuzzy
soft connectedness for fuzzy soft topological spaces
in sense of Chang but in this paper we used the
fuzzy ideal notion in defining fuzzy ideal separation
axioms, fuzzy ideal connectedness and fuzzy ideal
compactness in sense of Šostak.

Throughout the paper, X refers to an initial uni-
verse, IX is the set of all fuzzy sets on X (where
I = [0, 1], I0 = (0, 1], λc(x) = 1 − λ(x) ∀x ∈ X and
for all t ∈ I, t(x) = t ∀x ∈ X). A fuzzy point xt is
defined by xt(y) = t at y = x and xt(y) = 0 other-
wise.

(X, τ) is a fuzzy topological space ([14]), if τ :
IX → I satisfies the following conditions:

(O1) τ(0) = τ(1) = 1,
(O2) τ(λ1 ∧ λ2) ≥ τ(λ1) ∧ τ(λ2) for all λ1, λ2 ∈

IX,
(O3) τ(

∨
j∈J

λj) ≥ ∧
j∈J

τ(λj) for all {λj}j∈J ⊆ IX.

A map I : IX → I is called a fuzzy ideal ([13]) on
X if it satisfies:
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(1) I(0) = 1,
(2) λ ≤ μ ⇒ I(λ) ≥ I(μ) for all λ, μ ∈ IX,
(3) I(λ ∨ μ) ≥ I(λ) ∧ I(μ) for all λ, μ ∈ IX.

If I1 and I2 are fuzzy ideals on X, we have I1 is
finer than I2 (I2 is coarser than I1), denoted by I1 ≤
I2 iff I1(λ) ≤ I2(λ) ∀λ ∈ IX. The triple (X, τ, I) is
called a fuzzy ideal topological space.

Define the fuzzy ideal I◦ by

I◦(μ) =
{

1 at μ = 0,

0 otherwise

Recall that the fuzzy difference between two fuzzy
sets is defined as follows ([8]):

(λ ∧̄ μ) =
{

0 if λ ≤ μ,

λ ∧ μc otherwise.

Definition 1. [8] Let (X, τ, I) be a fuzzy ideal topo-
logical space and λ ∈ IX. Then, the r-fuzzy open
local function λ∗

r (τ, I) of λ is defined by

λ∗
r (τ, I) =

∧
{μ ∈ IX : I(λ � μ) ≥ r, τ(μc) ≥ r}.

Occasionally, we will write λ∗
r or λ∗

r (I) for λ∗
r (τ, I)

and it will be no ambiguity.
If I = I◦ then, for each λ ∈ IX, r ∈ I0, we have

λ∗
r = clτ(λ, r) ([8]).

Proposition 1. [8] Let (X, τ, I) be a fuzzy ideal
topological space and I1, I2 be fuzzy ideals on X.
Then,

(1) λ ≤ μ implies λ∗
r ≤ μ∗

r .
(2) If I1 ≤ I2, then λ∗

r (I1) ≥ λ∗
r (I2).

(3) λ∗
r = clτ(λ∗

r , r) ≤ clτ(λ, r) and (λ∗
r )∗r ≤ λ∗

r .
(4) λ∗

r ∨ μ∗
r ≤ (λ ∨ μ)∗r , and λ∗

r ∧ μ∗
r ≥ (λ ∧

μ)∗r .

In the following example, it is shown that:
λ∗

r /≤ (λ∗
r )∗r .

Example 1. Let τ be a fuzzy topology and I a fuzzy
ideal defined on X such that

τ(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 at λ = 0, 1
1
2 at λ = 0.5
1
2 at λ = 0.6

0 otherwise,

I(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 at λ = 0
1
2 at λ = 0.5
2
3 at 0 < λ < 0.5

0 otherwise.

(0.6)∗1
2

=
∧

{μ : I(0.6 � μ) ≥ 1

2
, τ(μc) ≥ 1

2
} = 0.5,

but ((0.6)∗1
2
)∗1

2
= (0.5)∗1

2
= ∧{μ : I(0.5 � μ) ≥

1
2 , τ(μc) ≥ 1

2 } = 0.

Proposition 2. [8] Let (X, τ, I) be a fuzzy ideal topo-
logical space and
{μj : j ∈ J} ⊆ IX a family. Then,

(1)
∨

((μj)∗r : j ∈ J) ≤ (
∨

(μj) : j ∈ J)∗r .
(2)

∧
((μj)∗r : j ∈ J) ≥ (

∧
(μj) : j ∈ J)∗r .

Definition 2. [8] Let (X, τ, I) be a fuzzy ideal topo-
logical space and μ ∈ IX. Then,

cl∗τ (μ, r) = μ ∨ μ∗
r and int∗τ (μ, r) = μ ∧ ((μc)∗r )c.

If I = I◦, then for each μ ∈ IX, r ∈ I0, cl∗τ (μ, r) =
μ ∨ μ∗

r = μ ∨ clτ(μ, r) = clτ(μ, r).

Proposition 3. [8] Let (X, τ, I) be a fuzzy ideal
topological space and λ, μ ∈ IX, r ∈ I0. Then,

(1) int∗τ (λ ∨ μ, r) ≥ int∗τ (λ, r) ∨ int∗τ (μ, r).
(2) intτ(λ, r) ≤ int∗τ (λ, r) ≤ λ ≤ cl∗τ (λ, r) ≤

clτ(λ, r).
(3) cl∗τ (λc, r) = (int∗τ (λ, r))c and int∗τ (λc, r) =

(cl∗τ (λ, r))c.
(4) int∗τ (λ ∧ μ, r) ≤ int∗τ (λ, r) ∧ int∗τ (μ, r).

Corollary 1. [8] Let (X, τ1, I), (X, τ2, I) be fuzzy
ideal topological spaces and τ1 ≤ τ2. Then, for each
λ ∈ IX, r ∈ I0, we have λ∗

r (τ2, I) ≤ λ∗
r (τ1, I).

Corollary 2. [8] Let (X, τ, I1), (X, τ, I2) be fuzzy
ideal topological spaces and I1 ≤ I2. Then, for each
λ ∈ IX, r ∈ I0, we have λ∗

r (τ, I1) ≥ λ∗
r (τ, I2).

Proposition 4. [8] Let (X, τ) be a fuzzy topolog-
ical space and I1, I2 fuzzy ideals on X. Then,
for each λ ∈ IX, r ∈ I0, we have λ∗

r (τ, I1 ∧ I2) =
λ∗

r (τ, I1) ∨ λ∗
r (τ, I2).
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2. Fuzzy ideal r-(t, s)-Ti separation axioms

Here, we introduce fuzzy separation axioms in
fuzzy ideal topological spaces.

Definition 3.

(1) A fuzzy ideal topological space (X, τ, I) is
called r-(t, s)-FI-T0 if for t, s ∈ I0, then x /= y

in X implies that there exists λ ∈ IX, r ∈
I0 with t ≤ int∗τ (λ, r) (x) such that t > λ(y)
or there exists μ ∈ IX, r ∈ I0 with s ≤
int∗τ (μ, r) (y) such that s > μ(x).

(2) A fuzzy ideal topological space (X, τ, I) is
called r-(t, s)-FI-T1 if for t, s ∈ I0, then x /= y

in X implies that there exist λ, μ ∈ IX, r ∈ I0
with t ≤ int∗τ (λ, r) (x), s ≤ int∗τ (μ, r) (y) such
that t > λ(y) and s > μ(x).

(3) A fuzzy ideal topological space (X, τ, I) is
called r-(t, s)-FI-T2 if for t, s ∈ I0, then x /= y

in X implies that there exist λ, μ ∈ IX, r ∈ I0
with t ≤ int∗τ (λ, r) (x), s ≤ int∗τ (μ, r) (y) such
that (t ∧ s) > sup(λ ∧ μ).

Remark 1. Consider a fuzzy ideal topological space
(X, τ, I) with I = I◦. Then, the graded fuzzy sep-
aration axioms defined in [7] and the r-(t, s)-FI-Ti

separation axioms are identical, i = 0, 1, 2.
Any fuzzy topological space (X, τ) satisfying

(t, s)-Ti separation axiom as defined in [7] will be
r-(t, s)-FI-Ti with respect to some fuzzy ideal on X

as well but not converse, i = 0, 1, 2. It is coming from
that: intτ(μ, r) ≤ int∗τ (μ, r) ∀μ ∈ IX, r ∈ I0.

Proposition 5. Every r-(t, s)-FI-Ti fuzzy ideal topo-
logical space (X, τ, I) is an r-(t, s)-FI-Ti−1 space,
i = 1, 2.

Proof. r-(t, s)-FI-T2 ⇒ r-(t, s)-FI-T1: Let (X, τ, I)
be an r-(t, s)-FI-T2 space, and suppose that (X, τ, I)
is not r-(t, s)-FI-T1. That is, for all x /= y in X

and for all λ ∈ IX, r ∈ I0 with t ≤ int∗τ (λ, r) (x), sup-
pose that λ(y) ≥ t; t ∈ I0. Now, for μ ∈ IX with
s ≤ int∗τ (μ, r) (y); s ∈ I0, we get that s ≤ μ(y), and
thus sup(λ ∧ μ) ≥ (λ ∧ μ) (y) ≥ (t ∧ s), which is a
contradiction to (X, τ, I) is an r-(t, s)-FI-T2 space.
Hence, (X, τ, I) is an r-(t, s)-FI-T1 space.

r-(t, s)-FI-T1 ⇒ r-(t, s)-FI-T0: It is clear. �
Recall that: a mapping f : (X, τ) → (Y, σ) is said

to be fuzzy continuous ([14]) if

intτ(f−1(ν), r) ≥ f−1(intσ(ν, r)) ∀ν ∈ IY , r ∈ I0.

It is equivalent to satisfy the following

clτ(f−1(ν), r) ≤ f−1(clσ(ν, r)) ∀ν ∈ IY , r ∈ I0.

Now, let us call a mapping f : (X, τ) → (Y, σ, I′
)

fuzzy ideal continuous provided that

intτ(f−1(ν), r) ≥ f−1(int∗σ(ν, r)) ∀ν ∈ IY , r ∈ I0.

It is easily shown that it is equivalent to

(IC) clτ(f−1(ν), r) ≤ f−1(cl∗σ(ν, r)) ∀ν ∈
IY , r ∈ I0.

Also, let us call f : (X, τ, I) → (Y, σ) a fuzzy ideal
open mapping provided that

f (int∗τ (λ, r)) ≤ intσ(f (λ), r) ∀λ ∈ IX , r ∈ I0.

It is easily shown that it is equivalent to

(IO) clσ(f (λ), r) ≤ f (cl∗τ (λ, r)) ∀λ ∈ IX , r ∈
I0.

It is clear that: any map f satisfying condition (IC)
(or fuzzy ideal continuous) will be a fuzzy continu-
ous mapping f : (X, τ) → (Y, σ), but not every fuzzy
continuous mapping f : (X, τ) → (Y, σ) will satisfy
the condition (IC) (or fuzzy ideal continuous) with
respect to a fuzzy ideal I′

on Y . Also, a map f sat-
isfying condition (IO) (or fuzzy ideal open) will be
a fuzzy open mapping f : (X, τ) → (Y, σ), but not
every fuzzy open mapping f : (X, τ) → (Y, σ) will
satisfy the condition (IO) (or fuzzy ideal open) with
respect to a fuzzy ideal I on X.

Theorem 1. Let (X, τ, I), (Y, σ, I′
) be fuzzy ideal

topological spaces and f : (X, τ) → (Y, σ, I′
) be an

injective fuzzy ideal continuous mapping. Then,
(X, τ, I) is an r-(t, s)-FI-Ti space if (Y, σ, I′

) is an
r-(t, s)-FI-Ti space, i = 0, 1, 2.

Proof. Since x /= y in X implies that
f (x) /= f (y) in Y and for (Y, σ, I′

) is r-(t, s)-
FI-T2, then there exist ν, ρ ∈ IY , r ∈ I0 with
t ≤ int∗σ(ν, r)(f (x)), s ≤ int∗σ(ρ, r)(f (y)); t, s ∈ I0
so that t ∧ s > sup(ν ∧ ρ), that is, t ≤
f−1(int∗σ(ν, r))(x), s ≤ f−1(int∗σ(ρ, r))(y); t, s ∈ I0.

Since f is fuzzy ideal continuous, t ≤
intτ(f−1(ν), r) (x) ≤ int∗τ (f−1(ν), r) (x), s ≤ intτ
(f−1(ρ), r) (y) ≤ int∗τ (f−1(ρ), r) (y); t, s ∈ I0.

That is, there exist λ = f−1(ν), μ = f−1(ρ) ∈ IX

with t ≤ int∗τ (λ, r)(x), s ≤ int∗τ (μ, r)(y); t, s ∈ I0.

Now, f is injective implies that sup(λ ∧ μ) =
sup(f−1(ν) ∧ f−1(ρ)) ≤ sup(ν∧ ρ)<t∧s. Hence,
(X, τ, I) is an r-(t, s)-FI-T2 space.
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For the cases of (X, τ, I) is r-(t, s)-FI-T0 and r-
(t, s)-FI-T1, it is similar. �

Theorem 2. Let (X, τ, I), (Y, σ, I′
) be fuzzy ideal

topological spaces and f : (X, τ, I) → (Y, σ) is a
surjective fuzzy ideal open mapping. Then, (Y, σ, I′

)
is an r-(t, s)-FI-Ti space if (X, τ, I) is an r-(t, s)-
FI-Ti space, i = 0, 1, 2.

Proof. Since p /= q in Y implies that there are x /= y

in X where x ∈ f−1(p), y ∈ f−1(q) and for (X, τ, I)
is r-(t, s)-FI-T2, then there exist λ, μ ∈ IX, r ∈ I0
with t ≤ int∗τ (λ, r)(x), s ≤ int∗τ (μ, r)(y); t, s ∈ I0
so that t ∧ s > sup(λ ∧ μ). Now, t ≤ ∨

x∈f−1(p)

int∗τ (λ, r)(x) = f (int∗τ (λ, r))(p), s ≤ ∨
y∈f−1(q)

int∗τ (μ,

r)(y) = f (int∗τ (μ, r))(q). From f is fuzzy ideal open,
then t ≤ intσ(f (λ), r)(p) ≤ int∗σ(f (λ), r)(p), s ≤
intσ(f (μ), r)(q) ≤ int∗σ(f (μ), r)(q), which means
that there exist ν = f (λ), ρ = f (μ) ∈ IY , r ∈ I0
with t ≤ int∗σ(ν, r)(p), s ≤ int∗σ(ρ, r)(q); t, s ∈ I0.
Since f is surjective,

sup(ν ∧ ρ) = sup(f (λ) ∧ f (μ)) ≤ sup(λ ∧ μ) < t ∧ s.

Hence, (Y, σ, I′
) is an r-(t, s)-FI-T2 space.

For the cases of (Y, σ, I′
) is r-(t, s)-FI-T0 and r-

(t, s)-FI-T1, it is similar. �

Example 2. Let X = {x, y}, τ be a fuzzy topology
on X defined by

τ(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 at λ = 0, 1

0.5 at λ = x1

0.7 at λ = y1

0 otherwise,

and I a fuzzy ideal on X defined by

I(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 at λ = 0

0.4 at λ = 0.6

0.7 at 0 < λ < 0.6

0 otherwise.

Then, (X, τ, I) is a 0.6-(t, s)-FI-Ti space, i =
0, 1, 2 but (X, τ) is not 0.6-(t, s)-F -Ti space, i = 1, 2
because:

For r = 0.6 and any μ ∈ IX, we have μ∗
0.6 =∧{ν : I(μ � ν) ≥ 0.6, τ(νc) ≥ 0.6} (where ν may

be 1, 0 or x1). That is,

μ∗
0.6 =

⎧⎪⎨
⎪⎩

0 at 0 ≤ μ < 0.6

x1 at μ = (xk ∨ ym), m < 0.6 < k

1 otherwise,

which means

int∗τ (μ, 0.6) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ at0.4 < μ ≤ 1

yq atμ = (xp ∨ yq),

p < 0.4 < q

0 otherwise

(1)

while

intτ(μ, 0.6) =
{

μ at μ ∈ {y1, 1}
0 otherwise

(2)

For λ = x0.6 ∨ y0.5, then int∗τ (λ, 0.6)(x) = λ(x) =
0.6, λ(y) = 0.5 < 0.6, and for μ = x0.5 ∨ y0.6,
then int∗τ (μ, 0.6)(y) = μ(y) = 0.6, μ(x) = 0.5 <

0.6, which means that for t = s = 0.6, we get
t ≤ int∗τ (λ, r)(x), s ≤ int∗τ (μ, r)(y) such that λ(y) <

t, μ(x) < s. Moreover, sup(λ ∧ μ) = 0.5 < 0.6 =
(t ∧ s). Hence, (X, τ, I) is satisfying the r-(t, s)-FI-
Ti axioms, i = 0, 1, 2, and we can not find λ, μ ∈ IX

satisfying the fuzzy r-(t, s)-T1 or r-(t, s)-T2 (From
Equation 2.2, intτ(μ, 0.6) = 0 ∀μ /∈ {y1, 1}).

Example 3. LetX = {x, y} and τ be a fuzzy topology
on X defined by

τ(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 at λ = 0, 1

0.5 at λ = x1

0.6 at λ = y1

0 otherwise,

and I a fuzzy ideal on X defined by

I(λ) =
{

1 − m at λ ≤ xm, 0 ≤ m ≤ 0.5

0 otherwise.

Then

(1) (X, τ, I) is a 0.6-(t, s)-FI-T0 space but it is nei-
ther 0.6-(t, s)-FI-T1 space nor 0.6-(t, s)-FI-T2
space because:

For r = 0.6 and any choice for μ ∈ IX as
μ = (xk ∨ ym), k ≤ 0.5, 0 ≤ m < 1, we get
that μc = (xp ∨ yq), p > 0.5, q > 0, and
then (μc)∗r = 1, and for μ = (xk ∨ ym), k >

0.5, 0 ≤ m < 1, we get μc = (xp ∨ yq), p ≤
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0.5, q > 0, and then (μc)∗r = 1. That is,
int∗τ (μ, r)(x) = 0 for any choice of μ with
y1 /≤ μ, and thus we can not find λ, μ ∈ IX

satisfying any of the r-(t, s)-FI-T1 axiom or
the r-(t, s)-FI-T2 axiom, while (X, τ, I) could
be only an r-(t, s)-FI-T0 space (by choosing
μ = x0.8 ∨ y1, then int∗τ (μ, r)(y) = μ(y) =
1 ≥ t > 0.8 = μ(x); t = 0.9). Moreover,
(X, τ) is also satisfying the fuzzy 0.6-(t, s)-
T0 axiom (taking μ = y1, then intτ(μ, r)(y) =
μ(y) = 1 ≥ t > 0 = μ(x); t = 0.6).

(2) In case of r = 0.8, we deduce that: (X, τ) is not
fuzzy r-(t, s)-Ti, i = 0, 1, 2, and (X, τ, I) is not
r-(t, s)-FI-Ti, i = 1, 2 while the r-(t, s)-FI-T0
axiom is satisfied (by taking μ = x0.8 ∨ y1).

3. Connectedness in fuzzy ideal topological
spaces

Here, we introduce the r-fuzzy ideal connectedness
of a fuzzy ideal topological space (X, τ, I).

Definition 4. Let (X, τ, I) be a fuzzy ideal topolog-
ical space. Then,

(1) the fuzzy sets λ, μ ∈ IX are called r-fuzzy
ideal separated (r-FI-separated for short) if

cl∗τ (λ, r) ∧ μ = λ ∧ cl∗τ (μ, r) = 0 ; r ∈ I0.

(2) (X, τ, I) is called r-fuzzy ideal connected
space (r-FI-connected for short) if it could
not be found r-FI-separated sets λ, μ ∈ IX,
λ /= 0, μ /= 0 such that λ ∨ μ = 1. That is,
there are no r-FI-separated sets λ, μ ∈ IX

except λ = 0 or μ = 0.

Definition 5. Let λ, μ ∈ IX, λ /= 0, μ /= 0 such that:

(1) λ, μ are r-FI-separated and λ ∨ μ = 1. Then
(X, τ, I) is called an r-FI-disconnected space.

(2) λ, μ are r-FI-separated and λ ∨ μ = ν. Then
ν is called r-FI-disconnected fuzzy set in IX.

(3) λ, μ are r-FI-separated and λ ∨ μ = χA, A ⊆
X. ThenA is called r-FI-disconnected crisp set
in IX.

Remark 2. Consider a fuzzy ideal topological space
(X, τ, I).

Any two r-fuzzy separated sets ([9]) λ, μ in IX

are r-FI-separated as well from that: cl∗τ (ν, r) ≤
clτ(ν, r) ∀ν ∈ IX; r ∈ I0.

That is, r-fuzzy disconnectedness ([9]) implies r-
FI-disconnectedness and thus, r-FI-connectedness
implies r-fuzzy connectedness ([9]).

Example 4. Let X = {x, y}. Define τ, I : IX → I as
in Example 2.1. Then:

For 0.5 < r ≤ 0.7 and for any μ ∈ IX, we have

cl∗τ (μ, r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ at0 ≤ μ < 0.6

(μ ∨ x1) atμ = (xk ∨ ym),

m < 0.6 < k

1 otherwise.

(3)

while

clτ(μ, r) =
{

μ at μ ∈ {x1, 0}
1 otherwise.

(4)

So, for 0.5 < r ≤ 0.7, we can easily find λ =
x0.7, μ = y0.5 ∈ IX with cl∗τ (λ, r) = x1, cl∗τ (μ, r) =
y0.5, and then cl∗τ (λ, r) ∧ μ = cl∗τ (μ, r) ∧ λ = 0,
which means there are r-FI-separated sets. But
for all possible choices of such r-FI-separated
sets, we have λ ∨ μ /= 1. Hence, (X, τ, I) is
not an r-FI-disconnected space, and hence
(X, τ, I) is an r-FI-connected space. Note that:
not every r-FI-separated sets are r-fuzzy sep-
arated sets, where clτ(λ, 0.7) = clτ(x0.7, 0.7) =
clτ(μ, 0.7) = clτ(y0.5, 0.7) = 1, which means that
clτ(λ, 0.7) ∧ μ = y0.5, clτ(μ, 0.7) ∧ λ = x0.7.
Hence, the result in Remark 3.1 is true.

Lemma 1. Let (X, τ, I) be a fuzzy ideal topological
space. Then, for any μ ∈ IX, r ∈ I0 with τ(μc) ≥ r,
we get that: μ∗

r ≤ μ.

Proof. From that: μ∗
r = clτ(μ∗

r , r) ≤ cl∗τ (μ, r) ≤
clτ(μ, r) = μ. �

Proposition 6. Let (X, τ, I) be a fuzzy ideal topolog-
ical space. Then the following are equivalent.

(1) (X, τ, I) is r-FI-connected.
(2) λ ∧ μ = 0, τ(λ) ≥ r, τ(μ) ≥ r; r ∈ I0, and

λ ∨ μ = 1 imply λ = 0 or μ = 0.
(3) λ ∧ μ = 0, τ(λc) ≥ r, τ(μc) ≥ r; r ∈ I0, and

λ ∨ μ = 1 imply λ = 0 or μ = 0.

Proof. (1) ⇒ (2): Let λ, μ ∈ IX with τ(λ) ≥
r, τ(μ) ≥ r; r ∈ I0 such that λ ∧ μ = 0 and λ ∨ μ =
1. Then, λ = μc and μ = λc, which means (from
Lemma 3.1) that λ∗

r ≤ λ and μ∗
r ≤ μ, and then
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cl∗τ (λ, r) = λ ∨ λ∗ = λ and cl∗τ (μ, r) = μ ∨ μ∗ =
μ, which means that 0 = λ ∧ μ = cl∗τ (μ, r) ∧ λ =
cl∗τ (λ, r) ∧ μ. That is, λ, μ are r-FI-separated sets in
IX so that λ ∨ μ = 1. But (X, τ, I) is r-FI-connected
implies that λ = 0 or μ = 0.

(2) ⇒ (3): Clear.
(3) ⇒ (1): Let λ, μ ∈ IX with τ(λc) ≥ r, τ(μc) ≥

r; r ∈ I0 such that λ ∧ μ = 0 and λ ∨ μ = 1. Then,
λ = μc and μ = λc, and moreover cl∗τ (λ, r) = λ

and cl∗τ (μ, r) = μ, which implies that 0 = λ ∧ μ =
cl∗τ (μ, r) ∧ λ = cl∗τ (λ, r) ∧ μ. That is, λ, μ are r-
FI-separated sets with λ ∨ μ = 1. From (3), we
have λ = 0 or μ = 0. Hence, (X, τ, I) is an r-FI-
connected space. �

Proposition 7. Let (X, τ, I) be a fuzzy ideal topo-
logical space and λ ∈ IX. Then, the following are
equivalent.

(1) λ is r-FI-connected.
(2) If μ, ρ are r-FI-separated sets with λ ≤ μ ∨

ρ, then λ ∧ μ = 0 or λ ∧ ρ = 0.
(3) If μ, ρ are r-FI-separated sets with λ ≤ μ ∨

ρ, then λ ≤ μ or λ ≤ ρ.

Proof. (1) ⇒ (2): Let μ, ρ be r-FI-separated
with λ ≤ μ ∨ ρ. That is, cl∗τ (μ, r) ∧ ρ =
cl∗τ (ρ, r) ∧ μ = 0; r ∈ I0 so that λ ≤ μ ∨ ρ. Since
cl∗τ (λ ∧ μ, r) ≤ cl∗τ (λ, r) ∧ cl∗τ (μ, r) and cl∗τ (λ ∧
ρ, r) ≤ cl∗τ (λ, r) ∧ cl∗τ (ρ, r), we get that cl∗τ (λ
∧μ, r) ∧ (λ ∧ ρ) ≤ (cl∗τ (λ, r) ∧ λ) ∧ (cl∗τ (μ, r) ∧
ρ) = λ ∧ 0 = 0, cl∗τ (λ ∧ ρ, r) ∧ (λ ∧ μ) ≤
(cl∗τ (λ, r) ∧ λ) ∧ (cl∗τ (ρ, r) ∧ μ) = λ ∧ 0 = 0,

and thus λ ∧ μ, λ ∧ ρ are r-FI-separated sets with
λ = (λ ∧ μ) ∨ (λ ∧ ρ). But λ is r-FI-connected
implies that λ ∧ μ = 0 or λ ∧ ρ = 0.

(2) ⇒ (3): If λ ∧ μ = 0, λ ≤ μ ∨ ρ means that
λ = λ ∧ (μ ∨ ρ) = λ ∧ ρ, and thus λ ≤ ρ. Also, if
λ ∧ ρ = 0, then λ = λ ∧ μ, and then λ ≤ μ.

(3) ⇒ (1): Let μ, ρ be r-FI-separated sets
such that λ = μ ∨ ρ. Then, from (3), λ ≤
μ or λ ≤ ρ. If λ ≤ μ, then ρ = (μ ∨ ρ) ∧
ρ = λ ∧ ρ ≤ μ ∧ ρ ≤ cl∗τ (μ, r) ∧ ρ = 0. Also, if
λ ≤ ρ, then μ = (μ ∨ ρ) ∧ μ = λ ∧ μ ≤ ρ ∧ μ ≤
cl∗τ (ρ, r) ∧ μ = 0. Hence, λ is r-FI-connected. �

Theorem 3. Let (X, τ, I), (Y, σ, I′
) be fuzzy ideal

topological spaces and f : (X, τ) → (Y, σ, I′
) is a

mapping satisfying the condition (IC). Then, f (λ) ∈
IY is r-FI-connected if λ ∈ IX is r-FI-connected.

Proof. Let μ, ρ ∈ IY be r-FI-separated with f (λ) =
μ ∨ ρ. That is, cl∗σ(μ, r) ∧ ρ = cl∗σ(ρ, r) ∧ μ =
0; r ∈ I0. Then, λ ≤ f−1(μ) ∨ f−1(ρ), and from
condition (IC), we get that

cl∗τ (f−1(μ), r) ∧ f−1(ρ) ≤ clτ(f−1(μ), r) ∧ f−1(ρ)

≤ f−1(cl∗σ(μ, r)) ∧ f−1(ρ)

= f−1(cl∗σ(μ, r) ∧ ρ)

= f−1(0) = 0,

cl∗τ (f−1(ρ), r) ∧ f−1(μ) ≤ clτ(f−1(ρ), r) ∧ f−1(μ)

≤ f−1(cl∗σ(ρ, r)) ∧ f−1(μ)

= f−1(cl∗σ(ρ, r) ∧ μ)

= f−1(0) = 0.

Hence, f−1(μ) and f−1(ρ) are r-FI-separated sets in X

so that λ ≤ f−1(μ) ∨ f−1(ρ). But λ is r-FI-connected
means, from (3) in Proposition 3.2, that λ ≤ f−1(μ) or
λ ≤ f−1(ρ), which means that f (λ) ≤ μ or f (λ) ≤ ρ.
Thus, again from (3) in Proposition 3.2, we get that
f (λ) is r-FI-connected. �

Corollary 3. If λ is r-fuzzy connected in (X, τ) or λ

is r-FI-connected in (X, τ, I) with respect to a fuzzy
ideal I on X, f : (X, τ) → (Y, σ) is fuzzy continu-
ous mapping, then f (λ) is r-fuzzy connected in (Y, σ),
and it is not necessary that f (λ) is r-FI-connected
with respect to a fuzzy ideal I′

on Y . With condi-
tion (IC), f (λ) is r-FI-connected whenever λ is r-fuzzy
connected or λ is r-FI-connected. Moreover, f (λ) is
r-fuzzy connected whenever λ is r-fuzzy connected or
λ is r-FI-connected.

Proof. Clear from fuzzy continuity, (IC) and
Theorem 3.1. �

The implications in the following diagram are
satisfied whenever f satisfies condition (IC).
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Only the implications in the following diagram are
satisfied whenever f is fuzzy continuous.

Proposition 8. Any fuzzy point xt, t ∈ I0 is r-
FI-connected, and consequently x1 ∀x ∈ X is
r-FI-connected.

Proof. Clear. �

Definition 6. Let X be a non-empty set and λ ∈
IX. Then, λ is r-FI-component if λ is maximal r-
FI-connected set in X, that is, if μ ≥ λ and μ is
r-FI-connected set, then λ = μ.

Proposition 9. Let λ /= 0 be r-FI-connected in X and
λ ≤ μ ≤ cl∗τ (λ, r); r ∈ I0. Then, μ is r-FI-connected
as well.

Proof. Let ν, ρ be r-FI-separated sets in IX such
that μ = ν ∨ ρ. That is, cl∗τ (ν, r) ∧ ρ = cl∗τ (ρ, r) ∧ ν =
0; r ∈ I0. Since λ ≤ μ implies that λ ≤ (ν ∨ ρ) and λ

is r-FI-connected, then from (3) in Proposition 3.2, we
have λ ≤ ν or λ ≤ ρ. From μ ≤ cl∗τ (λ, r) we get that

If λ ≤ ν, then ρ = (ν ∨ ρ) ∧ ρ = μ ∧ ρ ≤
cl∗τ (λ, r) ∧ ρ ≤ cl∗τ (ν, r) ∧ ρ = 0.
If λ ≤ ρ, then ν = (ν ∨ ρ) ∧ ν = μ ∧ ν ≤ cl∗τ (λ, r) ∧
ν ≤ cl∗τ (ρ, r) ∧ ν = 0.
Hence, μ is r-FI-connected. �

4. Compactness in fuzzy ideal topological
spaces

This section is devoted to introduce the notion of
r-fuzzy ideal compact spaces.

Definition 7. Let (X, τ, I) be a fuzzy ideal topological
space, λ ∈ IX, r ∈ I0. Then,

(1) λ is said to be r-fuzzy I-compact (r-FI-compact,
for short) if for every family {μj ∈ IX : τ(μj) ≥
r j ∈ J} with λ ≤ ∨

j∈J

μj , there exists a finite

subset J0 of J such that

I(λ � (
∨
j∈J0

μj)) ≥ r.

(2) λ is said to be r-fuzzy almost I-compact (r-FAI-
compact, for short) if for every family {μj ∈
IX : τ(μj) ≥ r j ∈ J} with λ ≤ ∨

j∈J

μj , there

exists a finite subset J0 of J such that

I(λ � (
∨
j∈J0

cl∗τ (μj, r))) ≥ r.

(3) λ is said to be r-fuzzy nearly I-compact (r-FNI-
compact for short) if for every family {μj ∈ IX :
τ(μj) ≥ r j ∈ J} with λ ≤ ∨

j∈J

μj , there exists a

finite subset J0 of J such that

I(λ � (
∨
j∈J0

intτ(cl∗τ (μj, r), r))) ≥ r.

It is clear that: r-FI-compactness =⇒ r-FAI-
compactness =⇒ r-FNI-compactness.

Remark 3. If I = I◦, then the concepts of:

(1) r-fuzzy compact and r-FI-compact are equiva-
lent.

(2) r-fuzzy almost compact and r-FAI-compact are
equivalent.

(3) r-fuzzy nearly compact and r-FNI-compact are
equivalent.

Definition 8. Let (X, τ, I) be a fuzzy ideal topological
space. Then, X is said to be r-fuzzy I-regular space if
for each λ ∈ IX, r ∈ I0 with τ(λ) ≥ r,

λ =
∨
j∈J

{λj : τ(λj) ≥ r, cl∗τ (λj, r) ≤ λ}.

It is clear that every r-fuzzy regular space is an r-fuzzy
I-regular space. But if I = I◦, then the concept of r-
fuzzy I-regular space and r-fuzzy regular space are
equivalent.

Theorem 4. Let (X, τ, I) be r-FAI-compact and r-
fuzzy I-regular. Then, X is an r-FI-compact space.

Proof. For every family {μj ∈ IX : τ(μj) ≥ r, j ∈ J}
with 1 = ∨

j∈J

μj . By r-fuzzy I-regularity of X, then for

each τ(μj) ≥ r, we have

μj =
∨

jk∈JK

{μjk
: τ(μjk

) ≥ r, cl∗τ (μjk
, r) ≤ μj}.
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Hence,1 = ∨
j∈J

(
∨

jk∈JK

μjk
). Since X is r-FAI-compact,

then there exists a finite index subset J0 × JK of J such
that

I(1 � (
∨
j∈J0

(
∨

jk∈JK

cl∗τ (μjk
, r)))) ≥ r.

For each j ∈ J0,
∨

jk∈JK

cl∗τ (μjk
, r) ≤ μj , which

implies that

1 � (
∨
j∈J0

(
∨

jk∈JK

cl∗τ (μjk
, r))) ≥ 1 � (

∨
j∈J0

μj).

Therefore, I(1 � (
∨

j∈J0

μj)) ≥ r, and thus (X, τ, I) is r-

FI-compact. �

Theorem 5. Let (X, τ, I) be r-FNI-compact and r-
fuzzy I-regular. Then, X is an r-FI-compact space.

Proof. Similar to the proof of Theorem 4.1. �

Theorem 6. Let f : (X, τ, I1) → (Y, σ, I2) be injective
fuzzy continuous mapping, λ ∈ IX is an r-FI-compact
and I1(ν) ≤ I2(f (ν)) ∀ν ∈ IX. Then, f (λ) is r-FI-
compact as well.

Proof. Let {μj ∈ IY : σ(μj) ≥ r , j ∈ J} be a fam-
ily with f (λ) ≤ ∨

j∈J

μj . By fuzzy continuity of f ,

τ(f−1(μj)) ≥ r and λ ≤ ∨
j∈J

f−1(μj). By r-FI-

compactness of λ, there exists a finite subset J0 of J

such that

I1(λ � (
∨
j∈J0

(f−1(μj)))) ≥ r.

Since I1(ν) ≤ I2(f (ν)) ∀ν ∈ IX, then

I2[f (λ � (
∨
j∈J0

(f−1(μj))))] ≥ r.

From f is injective, then f (λ � (
∨

j∈J0

(f−1(μj)))) =
f (λ) � (

∨
j∈J0

(μj)). Thus,

I2(f (λ) � (
∨
j∈J0

(μj))) ≥ r.

Hence, f (λ) is r-FI-compact. �

The concept of a fuzzy operation, associated with a
fuzzy topology τ, on a set X is a map α : IX × I0 → IX

so that intτ ≤ α ≤ clτ . This type of maps is called an
expansion on X or a fuzzy operator on (X, τ). Let

(X, τ1) and (Y, τ2) be two fuzzy topological spaces,
α and β are fuzzy operators on X, θ and δ are fuzzy
operators on Y , respectively [2].

Definition 9. Let (X, τ, I) be a fuzzy ideal topologi-
cal space, α a fuzzy operator on X and λ ∈ IX, r ∈
I0. Then, λ is called r-fuzzy ideal α-compact (r-
FIα-compact for short) if for each family {μj ∈ IX :
τ(μj) ≥ r, j ∈ J} with λ ≤ ∨

j∈J

μj , there exists a finite

subset J0 of J such that

I(λ � (
∨
j∈J0

α(μj, r))) ≥ r.

It is clear that for α = identity operator (resp. α = cl∗τ
and α = intτcl∗τ ), we get the r-FI-compact (resp. r-
FAI-compact and r-FNI-compact).

Definition 10. [2] A mapping f : (X, τ, I1) →
(Y, σ, I2) is said to be fuzzy ideal (α, β, θ, δ, I)-
continuous if for every μ ∈ IY ,
I1[α(f−1(δ(μ, r)), r) ∧̄ β(f−1(θ(μ, r)), r)] ≥ σ(μ);
r ∈ I0, where α, β are fuzzy operators on X and θ, δ

are fuzzy operators on Y .

(1) The concept of fuzzy almost ideal continuous
(FAIC for short) mapping is defined by: for
every μ ∈ IY , r ∈ I0 with σ(μ) ≥ r, then

f−1(μ) ≤ intτ(f−1(intσ(cl∗σ(μ, r), r)), r).

Here, α = idX, β = intτ, δ = idY , θ = intσ cl∗σ
and I1 = I◦.

(2) The concept of fuzzy weakly ideal continuous
(FWIC for short) mapping is defined by: for
every μ ∈ IY , r ∈ I0 with σ(μ) ≥ r, then

f−1(μ) ≤ intτ(f−1(cl∗σ(μ, r)), r).

Here, α = idX, β = intτ, δ = idY , θ = cl∗σ and
I1 = I◦.

(3) The concept of fuzzy almost weakly ideal con-
tinuous (FAWIC for short) mapping is defined
by: for every μ ∈ IY , r ∈ I0 with σ(μ) ≥ r,
then

f−1(μ) ≤ intτ(clτ(f−1(cl∗σ(μ, r)), r), r).

Here, α = idX, β = intτ clτ, δ = idY , θ = cl∗σ
and I1 = I◦.
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(4) The following diagram commutes.

For I2 = I◦, we get that:
(FAC ⇔ FAIC), (FWC ⇔ FWIC) and

(FAWC ⇔ FAWIC).

Theorem 7. Let (X, τ, I1) and (Y, σ, I2) be fuzzy ideal
topological spaces, α a fuzzy operator on X and δ, θ

are fuzzy operators on Y such that

ν ≤ α(ν, r) ∀ν ∈ IX, ρ ≤ δ(ρ, r) ∀ρ ∈ IY , r ∈ I0,

and f : X → Y is an injective mapping with
α(f−1(δ(ρ, r)), r) ≤ intτ(f−1(θ(ρ, r)), r) ∀ρ ∈
IY , r ∈ I0. If μ ∈ IX is r-FI-compact and
I1(μ) ≤ I2(f (μ)). Then, f (μ) ∈ IY is r-FIθ-
compact.

Proof. Let {λj ∈ IY : σ(λj) ≥ r, j ∈ J} be
a family with f (μ) ≤ ∨

j∈J

λj . Then, take

μj = intτ(f−1(θ(λj, r)), r) with τ(μj) ≥ r such
that α(f−1(δ(λj, r)), r) ≤ μj ≤ f−1(θ(λj, r)).
Also, since f−1(δ(λj, r)) ≤ α(f−1(δ(λj, r)), r),
f−1(λj) ≤ f−1(δ(λj, r)), then

f−1(λj) ≤ f−1(δ(λj, r)) ≤ μj ≤ f−1(θ(λj, r)),

which means that

μ ≤
∨
j∈J

f−1(λj) ≤
∨
j∈J

μj ≤ f−1(
∨
j∈J

θ(λj, r)),

that is, μ ≤ ∨
j∈J

μj and μ is r-FI-compact. Then, there

exists a finite set J0 ⊆ J such that

I1(μ � (
∨
j∈J0

μj)) ≥ r.

From f is injective, then f (μ � (
∨

j∈J0

μj)) = f (μ) �

(
∨

j∈J0

(f (μj))) ≥ f (μ) � (
∨

j∈J0

θ(λj, r)). Thus,

I2(f (λ) � (
∨
j∈J0

(θ(μj, r)))) ≥ r.

Hence, f (λ) is r-FIθ-compact. �

Corollary 4. Let (X, τ, I1) and (Y, σ, I2) be fuzzy
ideal topological spaces. Let f : X → Y be an injec-
tive FWIC mapping, I1(ν) ≤ I2(f (ν)) ∀ν ∈ IX, and
μ ∈ IX is an r-FI-compact. Then, f (μ) ∈ IY is an
r-FAI-compact.

Proof. Let α = idX, θ = cl∗σ , δ = idY , and I = I◦.
Then, the result follows from Theorem 4.4. �

Corollary 5. Let (X, τ, I1) and (Y, σ, I2) be fuzzy
ideal topological spaces. Let f : X → Y be an injec-
tive FAIC mapping, I1(ν) ≤ I2(f (ν)) ∀ν ∈ IX, and
μ ∈ IX is an r-FI-compact. Then, f (μ) ∈ IY is an
r-FNI-compact.

Proof. Let α = idX, θ = intσ cl∗σ , δ = idY , and I = I◦.
Then, the result follows from Theorem 4.4. �

5. Conclusion

Joining the concept of fuzzy ideal to the concept
of fuzzy topology on an underlying set X has some
effects as we shown in the paper. Fuzzy separation
axioms, fuzzy connectedness and fuzzy compactness
defined in a fuzzy ideal topological space were differ-
ent from those defined in a fuzzy topological space.
Although the concept of fuzzy ideal is independent
from the concept of fuzzy topology, but studying the
fuzzy ideal topological spaces added some results new
and different.
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